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                      Session goals

● Expand definitions of user data.

● Motivate the need for better control of user data.

● Discuss technical and regulatory challenges 
exacerbated by machine learning applications.

● Enable cross-disciplinary conversation about 
potential solutions.
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Introductions

1. Location (city/country)

2. Positions (grad student, undergraduate, professor, industry, etc)

3. Research interest/ Area of expertise
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What is your data?
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Data about you Data by you

Personal 
information

Intellectual 
property



Discussion

Q: Give examples of user data  that can be used by companies and 
governments for monetization and surveillance.
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*please use the link in the zoom chat to enter your answers. 



Where does the value 
come from?

● From the ability to train/learn 
predictive models of behaviour.

● Once-and-for-all data transactions.
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Deletion is NOT enough
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We need “forgetting”

● Models need to scrub away information 

pertaining to a data deletion request.

● Models need to efficiently unlearn data.
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Challenges to algorithmic forgetting

● Lack of incentives.

● Potential for unintended consequences.

● Technical and algorithmic challenges.
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Discussion

Q: Discuss challenges to implementing flexible self-management of data. 

These may include examples of lack of regulatory frameworks, unintended 
consequence or technical challenges.

12

*please use the link in the zoom chat to enter your answers. 



Misaligned incentives

● Current regulatory frameworks do not mandate data to be deleted from 
aggregated statistics and trained & deployed ML model.

● Lack of audit and verification mechanisms.

● Data aggregations and data derivatives are often not considered personal 
information.

● Companies have little incentives to design algorithms that are more ‘deletion’ 
compliant at the cost of performance loss.
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Unintended consequences: Streisand Effect
When trying to suppress something draws more attention to it
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Ⓒ sketchplanations



Algorithmic challenges

● No agreed upon technical definition of certifiable data removal.

● Model retraining upon data deletion request can be prohibitively 
expensive.

● Current data and model management lifecycles is not designed with 
flexible deletion in mind.
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How to achieve Machine Unlearning

“Gold standard” 

Delete data point {X} from dataset D and retrain ML models from scratch using D\{X}.

+ Simple and straightforward definition.

- Often practically infeasible due to high costs of model re-training.
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How to achieve Machine Unlearning

“Statistical indistinguishability” 

Modify an existing  model slightly to ‘remove the influence of a point’

● Many competing definitions.

● Requires lots of assumptions to work.
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How to achieve Machine Unlearning

“Data-deletion compliant algorithms” 

Design new kind of algorithms with ‘forgetting’ in mind:

1. Federated Learning

2. Differentially Private Algorithms

3. Distributed Learning
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Discussion

Q: How to reconcile regulatory aspirations with implementation 
challenges to successfully guarantee individual agency in data 
ownership?
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Thank you
Questions?
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Mihaela Curmei: 
mcurmei@berkeley.edu
https://mcurmei627.github.io/


